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1. Introduction 
 

Optical  solitons  is  one  of  the  most  fascinating  

areas of research at the present time. These soliton 

molecules are basic ingredients for information transfer, 

through optical fibers for trans-continental and trans-

oceanic distances [1-30]. Therefore, it is imperative to 

address the dynamics of these soliton pulses from a 

mathematical perspective. This will lead to a deeper 

understanding of the engineering aspects of these 

solitons that will lead to unprecedented novelty. 

This paper will study the different kind of solitons 

in dual-core optical fibers from a purely mathematical 

standpoint. The focus of this paper therefore will be to 

extract exact 1-soliton solution for the governing model. 

This model is described the coupled nonlinear 

Schrödinger’s equation (NLSE). There are several 

integration tools available to solve the model. A few of 

them are traveling waves,  homotopy analysis method, 

variational principle, Kudryashov’s method, simplest 

equation method, tanh-expansion scheme, extended tanh 

method and several others. 

The rest of the article is organized as follows:  In 

Section-2 the model has been described. The different 

kind of soliton solutions to the application: decoupled 

NLSEs for two-core fiber are constructed in next 

Sections 3 and 4 with Kerr and power law nonlinearities, 

respectively. In last Section 5, the conclusions are 

drawn. 

 

 

 

2. The model  
 

Pulse propagation in a decoupled two-core fibers has 

distinction from continuous wave propagation. In a 

conventional two core fiber, pulse propagation has been 

studied extensively by solving the coupled mode equations; 

where the light coupling between the two cores is 

characterized by a structure dependent parameter called the 

coupling coefficients. The model for decoupled NLSE read 

as [10, 15]:  
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where 1   and 2  are the field envelopes, while x  is the 

propagation co-ordinate and ja1  are group velocity 

mismatch, jb  are group velocity dispersion, jc  represent 

spatio-temporal dispersion and jk  are linear coupling 
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coefficients, for 2,1j .  It may also be noted that jd  

are defined by effAn  22 , where 2n ,   and effA  

are nonlinear refractive index, the wavelength and 

effective mode area of each wavelength, respectively. 

For more details, see [1, 2, 26].  

The functional F  represents the nonlinearity type. 

There are two types of nonlinearities: Kerr and power 

laws are being studied in this article. The functional F  

is real-valued algebraic function where it is necessary to 

have smoothness of the complex function 

  CCF jj :
2

  for 2,1j . Treating the 

complex plane C  as a two-dimensional linear space 

2R , the function   jjF 
2

 is k  times continuously 

differentiable, so that 
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In order to study this coupled system are being split 

into 

 
 i

jj etxPtx ),(),(                       (4) 

 

Here, ),( txPj , for 2,1j  are the amplitude 

components of the wave profiles, while   is the phase 

component of the profiles where 

 

  tx                         (5) 

 

The parameters  ,   and   are the wave 

number, frequency and the phase constant,  respectively.   

Substitute equations (4) and (5) into equations (1) and 

(2), and decomposed into real and imaginary parts.  

The real part equations for the two components are 

 

 

021

1

2

11
1

2

11

1

2

2

1

2

1211
































Pk

PPFd
tx

P
Pc

P
x

P
bPaP





         (6) 

 

 

012

2

2

22
2

2

22

2

2

2

2

2

2122
































Pk

PPFd
tx

P
Pc

P
x

P
bPaP





            (7) 

 
The imaginary part equations for the two components 

lead to the velocity of the solitons as 
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Since the wave profiles can be written as )( vtxg  , 

where v  is the velocity and g  is the functional form of the 

wave profile. Next, equating the two velocities with each 

other leads to a constraint relation between the soliton 

parameters as 

 

21

122211 )1)(2()1)(2(

cc

cabcab











 (10) 

 

where 21 cc  .  This relation holds for both Kerr and power 

laws of nonlinearity as well as for bright, dark and singular 

solitons for both of these laws. The real part equations given 

by (6) and (7) will now be analyzed separately in the next 3 

and 4 sections, based on the type of nonlinearity. 

 
 

3. Kerr law nonlinearity 
 

For Kerr law nonlinearity, we have  )(F .  So, 

equations (1) and (2) take the form [3, 14, 16-20] 
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Hence, the real part equations for the components are  
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The real part equations (13) and (14) are being 

further analyzed on the type of solitons that are 

considered. The study is, thus, divided into the following 

four subsections. 

The following first subsection deals with the bright 

optical solitons.  

 
 
3.1 Bright solitons 

 

To construct the bright solitons, we have the ansatz 

hypothesis of the form [16-20] 
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p

jj AtxP sech),(                 (15-1) 

 

and  

)( vtxB                      (15-2) 

 

where jA  for 2,1j  are the amplitudes of the 

solitons in two components, while B  and v  are the 

inverse width and velocity of the solitons, respectively. 

It can, thus, be written after substituting the derivatives 

of equation (15) in real part equations (13) and (14) with 

jn  3  for 2,1j , then we have  
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From equation (16), equating the exponent pair 

)3,2( jj pp   leads to  

1jp  for 2,1j . 

 

A system of equations is obtained after setting the 

coefficients of linearly independent function, 
ip j sech  

where 2,1j  and 2,0i , to zero in last equation (16). 

After solving the system, following results are in place. 

The wave number of the solitons are given by  
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The width of the solitons is given by  
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This width provokes the constraint condition, for 

2,1j , that is 

 

0)(  vcbd jjj                           (20) 

 
After setting widths of the soliton equal to one another 

for 2,1j  in equation (19) gives condition. 
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By inserting equations (19) and (21) into (17), one gets  

 

2

1

22

)(

)(

1

1

)(



























vcbd

vcbd

c

ak

c

vcbBb

jjn

nnj

j

jj

j

jjj










                 (22) 

 

After setting the two values of ω equal to one another 

for 2,1j  in equation (18). This leads to the width of the 

soliton B  in terms of the given parameter as 
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The above equation gives a constraint condition, 

that is  
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The equations (19) and (23) leads to the following 

amplitudes of the solitons in terms of given parameters 
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Thus, the bright 1-soliton solution to the coupled 

system (11) and (12), for 2,1j  is given by 
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3.2 Dark solitons 

 

To construct the dark solitons, we have the ansatz 

hypothesis of the form 
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Here jA  for 2,1j  and B  are free parameters 

of the solitons and v  is the speed of dark solitons, 

respectively.  It can, thus, be written after substituting 

the derivatives of the equation (27) in real part equations 

(13) and (14), then we have  
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From equation (28), equating the exponent pair 

)3,2( jj pp   leads to 
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We obtain a system of equations after setting the 

coefficients of linearly independent function, 
lp j tanh  

where 2,1j  and 2,0l , to zero in last equations. 

Solving the above system gives the wave number of the 

solitons: 
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while the free parameter B  is given by 
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This free parameter provokes the constraint conditions 

for 2,1j , that are 
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After setting the two values of B  equal to one another 

for 2,1j  in equation (31), one recovers another relation 

of the form given in equation (21). By inserting the (21) and 

(31) into (30), implies 
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After setting the two values of   equal to one another 

for 2,1j  in equation (29) yields another relation for the 

free parameter B  in the following form  
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The above equation gives another constraint 

condition, that is  
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The equations (31) and (34) leads to the free 

parameters jA  of dark solitons as 
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Thus, the dark 1-soliton solution to the coupled 

NLSEs (11) and (12), for 2,1j  is given by 
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where jj cbv   and jj ak .  

In the following subsection singular solitons of 

form-I, are being constructed.  

 

 

3.3 Singular solitons (Form-I) 

 

To construct the singular solitons of Form-I, we 
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where jA  for 2,1j , B  and v  are defined in 
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equations (13) and (14), then we have  
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From equation (39), equating the exponent pair 

)3,2( jj pp   leads to 
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Setting the coefficients of linearly independent 

function, 
lp j coth  where 2,1j  and 2,0l , to zero 

and by solving the obtained set of equations. 

It may be noted that the same results can be obtained as 

in equations (29)-(36) for dark solitons. 

Thus, the singular 1-soliton solution to the coupled 

NLSEs (11) and (12), for 2,1j  is given by 
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where jj cbv   and jj ak .  

 

 

3.4 Singular solitons (Form-II) 

 

To construct the singular solitons of Form-II, we have 

the ansatz hypothesis of the form 
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and  

)( vtxB                              (41-2) 

 

where jA , B  and v  are defined in previous subsections. It 

can, thus, be followed  
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From equation (42), equating the exponent 

pair )3,2( jj pp   leads to 1jp , we obtain a system of 

equations after setting the coefficients of linearly 

independent function, 
lp j csch  where 2,1j  and 

2,0l , to zero in last equation (42). After solving the 

system, the wave number of the solitons are given by 
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The free parameter B  of the solitons is 
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which introduces constraint condition, for 

2,1j ,  

0)(  vcbd jjj                         (46) 

 

After setting the two Bs equal to one another for 

2,1j  in equation (45) leads to another relation 

which is similar to (21).  By inserting equations (45) and 

(21) into (43), one obtains 
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After setting the two values of   equal to one 

another for 2,1j  in equation (44) leads to another 

relation for B : 
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The above equation gives a constraint condition, 

that is  
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The equations (19) and (23) produce another 

constraint condition for 2,1j  in the following form  
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Thus, the singular 1-soliton solution (Form-II) to the 

coupled NLSE (11) and (12), for 2,1j  is given by 
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4. Power law nonlinearity 
 

For power law nonlinearity, 
mF  )(  where m  is 

the power law nonlinearity factor with the restriction 

20 m  and in particular 2m  to avoid the self-

focusing singularity. So the equations (1) and (2) take the 

form [9, 16-20] 
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Hence, the real part equations for the components are 
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The real part equations (for 2,1j ) are being 

analyzed on the type of solitons that are considered.  The 

study is, thus, divided into the following subsections. 

 

 

4.1 Bright solitons 

 

This section will consider the case when both the 

components support bright solitons. Therefore, the starting 

hypothesis will be the same as given in section 3.1. 

Therefore following the same procedure as adopted in 

section 3.1, the real component equation (51) reduces to 
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From equation (52), equating the exponent pair 

))12(,2( jj pmp   leads to  

 

m
p j

1
  

 

Setting the coefficients of linearly independent 

function, 
ip j sech  where 2,1j  and 2,0i , to 

zero in last equation (52).  

The wave number of the solitons are given by  
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The width of the solitons is given by  
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The width of the solitons B  provokes the 

constraint condition, for 2,1j , that is 

 

0)(  vcbd jjj                              (58) 

 

After setting the two Bs equal to one another for 

2,1j  in equation (57). This leads to the condition 

(21). By inserting equations (57) and (21) into (55), one 

recovers 
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After setting the two values of   equal to one another 

for 2,1j  in equation (56). This leads to another relation 

for B  
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The above equation gives a constraint condition  
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Thus, the bright 1-soliton solution to the coupled 

NLSEs (53), for 2,1j  is given by  
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4.2 Dark solitons 

 

This section will consider the case when both the 

components support bright solitons. Therefore, the starting 

hypothesis will be the same as given in section 3.2. Thus, 

following the same procedure as adopted in section 3.2, the 

real component equation (53) reduce to 
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From equation (63), equating the exponent pair 

))12(,2( jj pmp   leads to  
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Next from stand-alone linearly independent 

functions in (63)  
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From the above two expressions for jp , one 

arrives at 1m . This shows that for dark soliton 

solution, power law nonlinearity reduces to Kerr law 

nonlinear medium. Therefore all results from (29) 

through (37) remain valid for this section, as well.   

 

 

4.3 Singular solitons (Form-I) 

 

This section will consider the case when both the 

components support singular solitons of Form-I. 

Therefore, the starting hypothesis will be the same as 

given in subsections 3.3 for singular solitons of Form-I. 

Thus following the same procedure as adopted in 

subsection 3.3, the real component equation (53) reduce 

to  
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From equation (64), equating the exponent pair 

))12(,2( jj pmp   leads to  

m
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Again from linearly independent functions in (64), 

one recovers: 

1jp  

Thus similarly, as in dark solitons, singular soliton 

(Form-I) solutions, for power law nonlinearity, reduce to 

the solutions of Kerr law nonlineraity. Therefore all 

discussion from Section 3.3 after equation (39) are valid, for 

power law nonlinearity as well. 

 

4.4 Singular solitons (Form-II) 

 

This section will consider the case when both the 

components support singular solitons of Form-II. Therefore, 

the starting hypothesis will be the same as given in 

subsections 3.4 for singular solitons of Form-II. Thus, 

following the same procedure as adopted in subsection 3.4, 

the real component equation (53) reduce to  
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From equation (65), equating the exponent pair 

))12(,2( jj pmp   leads to  

m
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The system of equations after setting the coefficients of 

linearly independent function, 
lp j csch  where 2,1j  

and 2,0l , to zero in equation (65) leads to the wave 

number of the solitons being 
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The width of the solitons is given by 
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The width of the solitons B  provokes the constraint 

condition, for 2,1j , as given by (32). After setting the 

two Bs equal to one another for 2,1j  in equation (68). 

This leads to another relation which is similar to (21). By 

inserting equations (68) and (21) into (66), one obtains  
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After setting the two values of   equal to one 

another for 2,1j  in equation (67). 

This leads to another relation for B  
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The above equation gives a constraint condition 

given by (49). Thus, the singular 1-soliton solution of 

Form-II to the coupled system (53), for 2,1j  is  
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5. Conclusion 
 
This paper obtained bright dark and singular 1-

soliton solutions to the model for dual-core optical 

fibers. The ansatz method is applied to carry out the 

integration with Kerr and power laws of nonlinearities. 

Bright, dark and singular soliton solutions are recovered. 

It is observed that dark soliton and singular solitons 

(Form-I), for power law nonlinearity reduce to the 

results for Kerr law nonlinearity. The results of this 

paper stands on a strong footing. In future, additional 

integration schemes will be applied to obtain soliton as 

well as other solutions to dual-core fibers. Some of these 

additional solutions are cnoidal waves, snoidal waves, 

singular periodic functions and others. These results will 

be reported soon.  

 

Acknowledgment 

 
This research is funded by Qatar National Research 

Fund (QNRF) under the grant number NPRP 6-021-1-

005.  The sixth and seventh authors (AB & MB) 

thankfully acknowledge this support from QNRF. 

 
References 

 

  [1] G. P. Agrawal. Applications of Nonlinear Fiber 

Optics.  

        Academic Press, New York. USA. (1989).  

  [2] G. P. Agrawal. Nonlinear Fiber Optics. 2nd Ed.,  

        Academic Press, New York. USA. (2001). 

  [3] A. A. Alshaery, E. M. Hilal, M. A. Banaja, S. A.  

        Alkhateeb, L. Moraru, A. Biswas, J. Optoelectron. Adv.  

        Mater. 16, 750 (2014).  

  [4] A. Biswas, Physics Letters A 372, 5941 (2008).  

  [5] A. Biswas, D. Milovic, Communications in Nonlinear  

        Science & Numerical Simulation 15, 1473 (2010). 

  [6] A. Biswas, Mathematical Methods in Applied Science  

        34, 958 (2011).  

  [7] A. Biswas, D. A. Lott, B. Sutton, K. R. Khan, M. F.  

        Mahmood, Journal of Electromagnetic Waves and  

        Applications 27, 1976 (2013).  

  [8] A. Biswas, M. Mirzazadeh, Optik 125, 4603 (2014).  

  [9] A. Biswas, M. Mirzazadeh, M. Eslami, Optik 125, 4215 

(2014).  

[10] N. Boumaza, T. Benouaz, A. Chikhaoui, A. Cheknane,  

       International Journal of Physical Sciences 4, 505 (2009).  

[11] M. Eslami, M. Mirzazadeh, B. F. Vajargah, A. Biswas,  

        Optik 125, 3107 (2014). 

[12] J. X.-Fang, W. Jun, W.J.-Ping, H. Ping, Advances in  

        Optical Technologies 2013, 636472 (2013). 

[13] L. Girgis, D. Milovic, S. Konar, A. Yildirim, H. Jafari,  

       A. Biswas, Romanian Reports in Physics 64, 663 

       (2012).  

[14] P. D. Green, A. Biswas, Communications in Nonlinear  

        Science and Numerical Simulations 15, 3865 (2010).  

[15] T. S. Raju, P. K. Panigrahi, K. Porsezian, Physical  

        Review E 71, 026608 (2005). 

[16] M. Savescu, A. H. Bhrawy, E. M. Hilal, A. A.  

        Alshaery, A. Biswas, Frequenz 68, 445 (2014).  

[17] M. Savescu, A. H. Bhrawy, A. A. Alshaery, E. M.  

        Hilal, K. R. Khan, M. F. Mahmood, A. Biswas, Journal  

         of Modern Optics 61, 442 (2014). 

[18] M. Savescu, A. A. Alshaery, A. H. Bhrawy, E. M.  

        Hilal, L. Moraru, A. Biswas, Wulfenia 21, 35 (2014). 

[19] M. Savescu, A. H. Bhrawy, E. M. Hilal, A. A.  

         Alshaery, A. Biswas, Romanian Journal of Physics 59,  

         582 (2014).  

[20] H. Triki, S. Lepule, A. Love, A.H. Kara, A. Biswas,  

         Optik 125, 2784 (2014).  

[21] M. Younis, Journal of Advanced Physics 2, 220   

         (2013). 

[22] M. Younis, M. Iftikhar, H. Ur Rehman, Journal of  

        Advanced Physics 3, 77 (2014).  

[23] M. Younis, S. Ali, Applied Mathematics &  

        Computation 246, 460 (2014).  

[24] M. Younis, H.Ur Rehman, M. Iftikhar, Applied  

        Mathematics & Computation 249, 81 (2014). 

[25] M. Younis, Mathematical Science Letters 3, 193   

        (2014).  

[26] A. Zakery, M. Hatami, Journal of Physics D:  

        Applied Physics 40, 1010 (2007).  

[27] Q. Zhou, D. Yao, F. Chen, Journal of Modern  

        Optics 60, 1652 (2013).  

[28] Q. Zhou, D. Yao, F. Chen, W. Li, Journal of  

        Modern Optics 60, 854 (2013). 

[29] Q. Zhou, Journal of Modern Optics 61, 500 (2014). 

[30] Q. Zhou, Optik 125, 3142 (2014).   

 

 
_______________________ 
*Corresponding author: biswas.anjan@gmail.com 


